
EE8725 HW 5 
 
Solve the following optimization problem using the interior point algorithm: 
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See attached pages for theory of interior point algorithm



8.1 APPENDIX 8A: Interior Point Method 
 
The interior point method converts the inequality constraints to equality constraints using the 
same technique of adding a slack variable to each constraint. Then a “penalty function” is added 
to the  objective function so that the equations become: 
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where 0k  is the barrier parameter which is forced to decrease toward zero as the algorithm 

iterates to a solution (k is the iteration counter).   The Lagrangian now looks like this: 
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And the Gradient of this Lagrangian becomes: 
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The algorithm at iteration k requires the solution of the following set of equations: 
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Solution of the Optimization Problem of Appendix 3A using Interior Point 
Algorithm1 
 
The optimization problem of Appendix 3A with one equality constraint and one inequality 
constraint is as given below: 
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To make this a more interesting problem we shall drop the equality constraint and reverse the 
direction of the inequality constraint, we then solve the problem: 
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First we add a slack variable to the inequality constraint and the log barrier function to the 
objective: 
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The Lagrangian function is: 
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1 This solution was done for a class homework problem by Volker Landenberger 
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Starting at 1 10x  , 2 10x  , and 20  this solution of these equations with a reduction of  by 

one half each iteration converges to the solution: 
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